

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### POLAROGRAPHIC DETERMINATION OF URANYL ION ADSORPTION ON POLY-(2-HYDROXYETHYL METHACRYLATE/ITACONIC ACID) HYDROGELS

Recai İnam<sup>a</sup>, Tuncer Çaykara<sup>a</sup>, Cengiz Özyürek<sup>a</sup>

<sup>a</sup> Gazi University, Ankara, Turkey

Online publication date: 31 May 2001

**To cite this Article** İnam, Recai, Çaykara, Tuncer and Özyürek, Cengiz(2001) 'POLAROGRAPHIC DETERMINATION OF URANYL ION ADSORPTION ON POLY-(2-HYDROXYETHYL METHACRYLATE/ITACONIC ACID) HYDROGELS', Separation Science and Technology, 36: 7, 1451 — 1461

**To link to this Article:** DOI: 10.1081/SS-100103881

URL: <http://dx.doi.org/10.1081/SS-100103881>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## POLAROGRAPHIC DETERMINATION OF URANYL ION ADSORPTION ON POLY-(2-HYDROXYETHYL METHACRYLATE/ITACONIC ACID) HYDROGELS

Recai İnam, Tuncer Çaykara,\* and Cengiz Özyürek

Gazi University, Faculty of Art and Science,  
Department of Chemistry, 06500, Besevler,  
Ankara, Turkey

### ABSTRACT

Copolymeric hydrogel adsorbents containing hydrophilic groups both providing swelling in water and chelating with uranyl ions were prepared by using  $\gamma$ -rays and their adsorptive ability for recovering uranium from aqueous media was investigated. Uranyl adsorption capacities of the hydrogels were determined by polarographic techniques to be 4.9–6.0 (mg  $\text{UO}_2^{+2}/\text{g}$  dry gel) at pH 3.87 and 4.2–5.6 (mg  $\text{UO}_2^{+2}/\text{g}$  dry gel) at pH 5.4 from 15 ppm uranyl nitrate solution, depending on the mole content of IA in the hydrogel. The adsorption studies show that the temperature and the ionic strength of the solution influence uranyl ion adsorption by P(HEMA/IA) hydrogels.

**Key Words:** Hydrogel; Poly(2-hydroxyethyl methacrylate/itaconic acid); Polarographic determination; Uranyl adsorption.

---

\*Corresponding author. Fax: +90-312-2122279; E-mail:tcaykara@hotmail.com

## INTRODUCTION

The removal and recovery of metal ions has a potentially vast range of applications in conserving environment and using resources. In this regard, the chelate-forming polymeric and copolymeric ligands have been extensively studied and many reviews are available in the field (1–5). These polymeric and copolymeric materials have been used for the preconcentration and separation of trace elements from seawaters, in particular, the inclusion of diprotic acid units copolymeric matrices as the complexation centers results in promising materials for the separation of heavy metal ions from aqueous solution (6).

Because of the anticipated exhaustion of terrestrial uranium reserves in the near future, during the last three decades, further research has been directed to recovering uranium from non-conventional sources, such as coal and natural waters ( $0.1\text{--}10\text{ mg U/m}^3$ ), and especially from seawater ( $2.8\text{--}3.3\text{ mg U/m}^3$ ). The recovery of uranium from the contaminated water found in flooded mines ( $0.1\text{--}15\text{ mg U/m}^3$ ) also presents a very important environmental problem to be solved. The process of using adsorbents is thought to be the most effective method for recovering uranium because of the high selectivity for uranium, the ease of handling, environmental safety (7).

The water uptake, as well as the metal ions uptake, increases in proportion to the kind and the amount of hydrophilic groups because the diffusion of aqueous solutions in more hydrophilic polymers is faster than in less hydrophilic polymers, which is a rate-determining step for adsorption (8).

Differential pulse polarography has been used for trace element analysis with priority because of its highly sensitive and inexpensive instrumentation (9). Other accessible techniques capable of heavy metal ion determination, such as atomic absorption spectroscopy, UV spectrometry and Gamma spectrometry, often do not offer sufficient sensitivity and selectivity for accurate determination at the trace concentration. These are all time-consuming procedures and the loss of these metals is also possible.

We now report the synthesis of the diprotic acid containing 2-hydroxy ethyl methacrylate/itaconic acid copolymers and the examination of their adsorption abilities toward the uranyl ions. For the determination of adsorbed uranyl ion, polarographic technique was used in this study. The effect of external stimuli, such as pH temperature and ionic strength on the uranyl ions adsorption capacity of these hydrogels has also been investigated.

## EXPERIMENTAL

### Chemicals

The two monomers used in this study, HEMA and IA, were obtained from Merck and BDH, respectively. The glacial acetic acid, phosphoric acid, and boric



acid used to prepare Britton-Roinson (B-R) buffers were obtained from Merck. The uranyl nitrate (UN) used for the adsorption studies was purchased from Fisher.

### Preparation of Hydrogels

Three components were used in the preparation of HEMA/IA hydrogels: HEMA, IA, and water. Aqueous solutions of monomers were prepared in 1 mL of pure water in different compositions (HEMA/IA mole ratios, 97.3/2.7, 96.0/4.0, 94.7/5.3, 89.9/10.1). These monomer solutions were placed in the PVC straws of 4 mm diameter and irradiated by 2.8 kGy in air at ambient temperature in PX- $\gamma$ -30 Isslodovateji irradiator at a fixed dose rate of 3.36 kGy  $h^{-1}$ .

### Compositions of Hydrogels

Hydrogels obtained in long cylindrical shapes were cut into 3–4 mm pieces. The pieces were dried in a vacuum oven at 315 K to constant weight and subjected to Soxhlet extraction with water. The uncross-linked polymer and unreacted IAs were removed from the gels by this extraction. The extracted gel pieces were dried again in vacuum oven at 315 K to constant weight. The amount of unreacted IA in the aqueous extract was determined by titration with NaOH (0.05 M) to a phenolphthalein end point. Mole percentages of IA in the Gel 1, Gel 2, Gel 3, and Gel 4 were found to be 2.7, 4.0, 5.3, and 10.1, respectively.

### Swelling Studies

Dried hydrogels were left to swell in a solution of desired pH (1–8) at ambient temperature until equilibrium (maximum swelling) was attained. The swollen gels were removed from the swollen media, quickly bottled with a dry filter paper, and weighed. The equilibrium-swelling ratio of hydrogels was determined gravimetrically, assuming the additivity of volume through the following equation:


$$Q = 1 + (w_2/w_1 - 1) \rho_{\text{polymer}}/\rho_{\text{solvent}} \quad (1)$$

where  $Q$  is the swelling ratio of hydrogels by volume,  $w_1$  is weight of the hydrogel before swelling,  $w_2$  is the weight of the hydrogel at equilibrium swelling  $\rho_{\text{polymer}}$ , and  $\rho_{\text{solvent}}$  are densities of polymer and solvent, respectively.

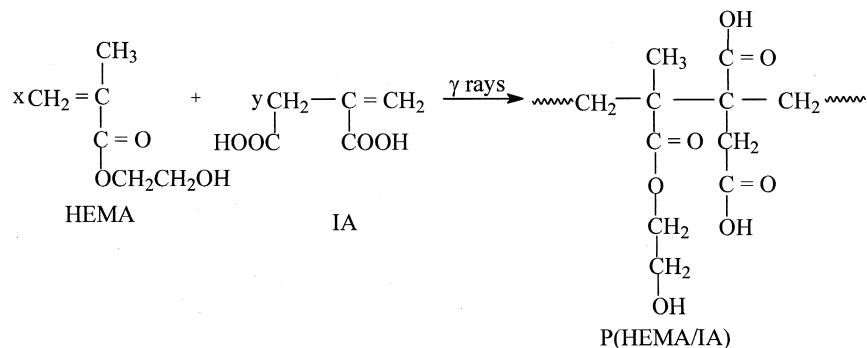


**Adsorption of  $\text{UO}_2^{+2}$  on Hydrogels**

A certain amount of P(HEMA/IA) hydrogel ( $\sim 0.05$  g) was put into 20 mL  $\text{UO}_2(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$  solution ( $\text{pH} = 1\text{--}7$ ) in concentration range 5–50 ppm and allowed to equilibrate for 96 hours at ambient temperature. Then the adsorbent was taken away by decantation from the solution. The equilibrium concentration of  $\text{UO}_2^{+2}$  ion in the solution was determined by Differential Pulse Polarographic technique (DPP). Ten mL of uranyl nitrate (UN) (5–50 ppm) in the polarographic cell was deaerated by passing pure nitrogen gas for about 5 min. Polarograms were taken by scanning the potential from 0.00 mV to about  $-1300$  mV, at the initial time and 96 h later. The  $\text{UO}_2^{+2}$  ion showed two peaks at  $-200$  mV and  $-950$  mV in 0.1 M HCl during the potential scan. Both peaks decreased due to the adsorption of  $\text{UO}_2^{+2}$  ions on gels (see Fig. 1). From the differences between the peak cur-



**Figure 1.** Differential pulse polarograms of  $\text{UO}_2^{+2}$  ion (30 ppm). (a) Polarogram of 30 ppm  $\text{UO}_2^{+2}$  before adsorption. (b) Polarogram of 30 ppm  $\text{UO}_2^{+2}$  after adsorption (96 h).

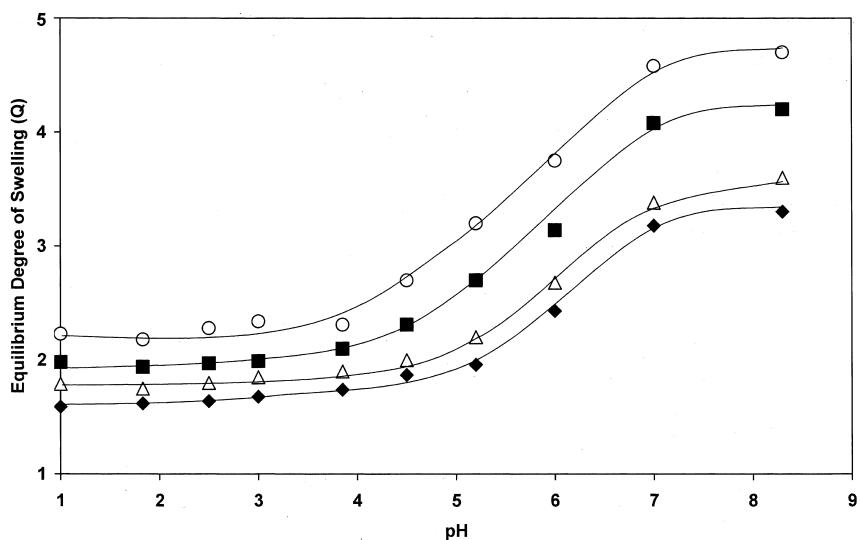



rents, the amount of adsorbed  $\text{UO}_2^{+2}$  ions was calculated. The conditions were drop time 1 s, current range 0.2 mA, pulse amplitude 50 mV, and scan rate 5 mV  $\text{s}^{-1}$ .

## RESULTS AND DISCUSSION

### Synthesis of Hydrogels

When HEMA/IA/water is irradiated with  $\gamma$ -rays, free radicals are generated in the aqueous solution. Random reactions of these radicals with the monomers lead to the formation of copolymers of HEMA/IA. When the irradiation dose is increased beyond the certain value, the polymer chains cross-link and gel is then obtained.  $\gamma$ -Rays induced copolymerization of HEMA and IA is a free radical process, and can be designated as follows:




Percentage gelation, i.e., percentage conversion of monomers into insoluble network, was based on the total weight of diprotic acid and monomer in the initial mixture. One hundred percent gelation was observed for HEMA/IA mixtures after 2.8 kGy irradiation.

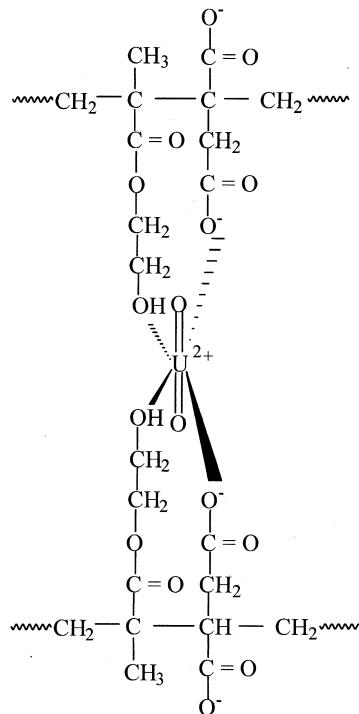
### Swelling Behavior of Hydrogels

The equilibrium swelling behaviors of P(HEMA/IA) hydrogels were investigated as a function of pH at fixed ionic strength ( $I = 0.1$ ) and temperature ( $T = 25^\circ\text{C}$ ). Figure 2 shows the swelling behaviors of these hydrogels containing various mole ratios of IA at various pH media. Swelling of hydrogels was found to increase with pH. In all compositions, the maximum extent of swelling reacted at pH 7 and above, due to the complete dissociation of acid groups of IA





**Figure 2.** Effect of pH on the equilibrium degree of swelling values of P(HEMA/IA) Hydrogels: (◆) Gel 1, (△) Gel 2, (■) Gel 3, (○) Gel 4.

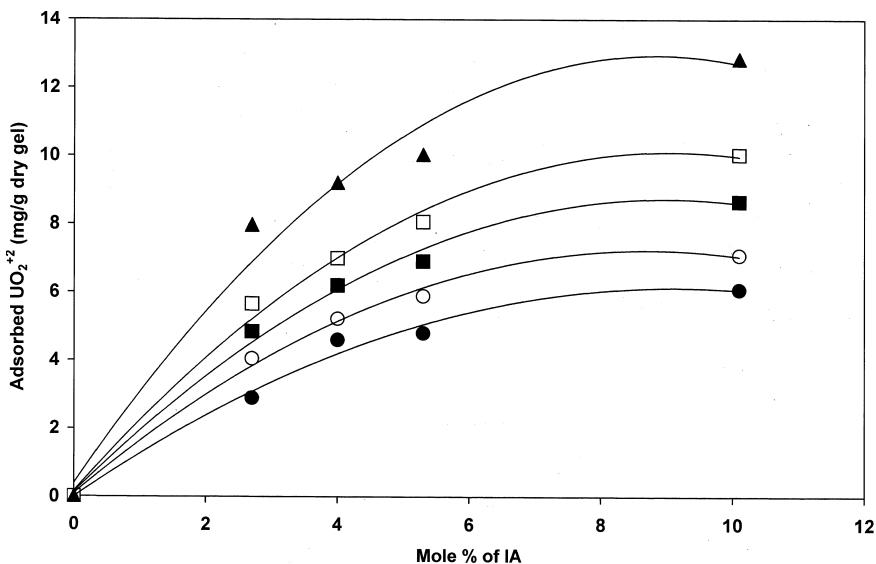

at this pH value and above. The first and second dissociation constants of IA were  $pK_{a1} = 3.85$  and  $pK_{a2} = 5.44$ . Since the first and second dissociation constants for IA were rather close, the consecutive swellings near these pH values overlap and double-step swelling versus pH curves can be observed in Fig. 2. Charged groups attached to the polymeric network structure played an essential role in swelling properties. Previous studies have shown that swelling behaviors of charged hydrogels are a function of the ionic composition of the swelling agent (10).

### Adsorption of $\text{UO}_2^{+2}$ on Hydrogels

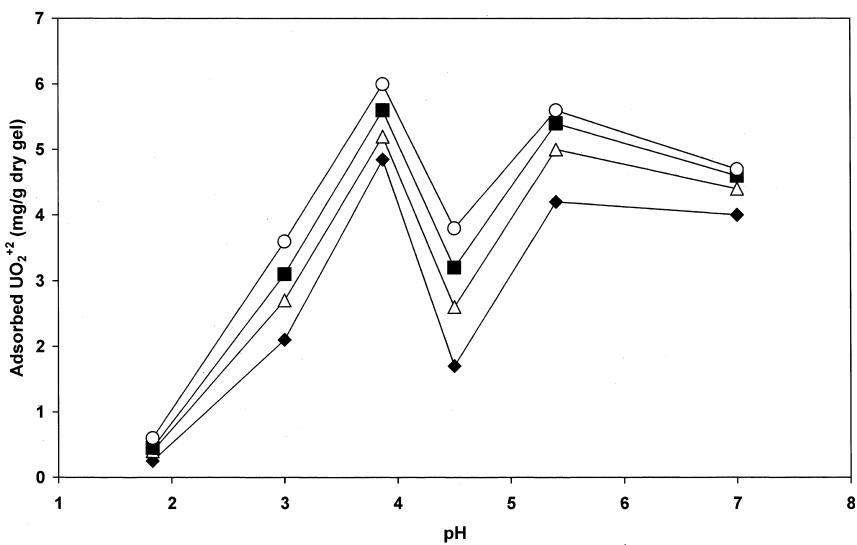
To determine the adsorption of  $\text{UO}_2^{+2}$  ions, P(HEMA/IA) hydrogels were placed in aqueous solutions of uranyl nitrate and allowed to equilibrate for 4 days. After this time, the colors of  $\text{UO}_2^{+2}$  ion-adsorbed P(HEMA/IA) were observed to change from light yellow to dark brown. P(HEMA/IA) hydrogels have many carboxylic acid groups that can increase the interaction between uranyl ions and acidic groups in the hydrogels. Possible interactions between uranyl ion and acidic



groups can be designated as follows:




The amount of adsorbed  $\text{UO}_2^{+2}$  ions depends on the concentration of uranyl solutions and the mole percentage of IA in the gel system as shown in Fig. 3. As can be seen from the figure, the uranyl adsorption capacity of these hydrogels was found to be in the range of 2.9–12.9 mg  $\text{UO}_2^{+2}/\text{g}$  dry gel. Increasing the amount of IA in hydrogel from 2.7 to 10.1 mole % caused significant increases in the amount of adsorbed  $\text{UO}_2^{+2}$  ions. This increase is caused by an increase in specific interactions between positively charged  $\text{UO}_2^{+2}$  ions and ionized IA in the hydrogel, as well as an increase of free volume of gel available for diffusion.


### The Effect of pH on the $\text{UO}_2^{+2}$ Adsorption

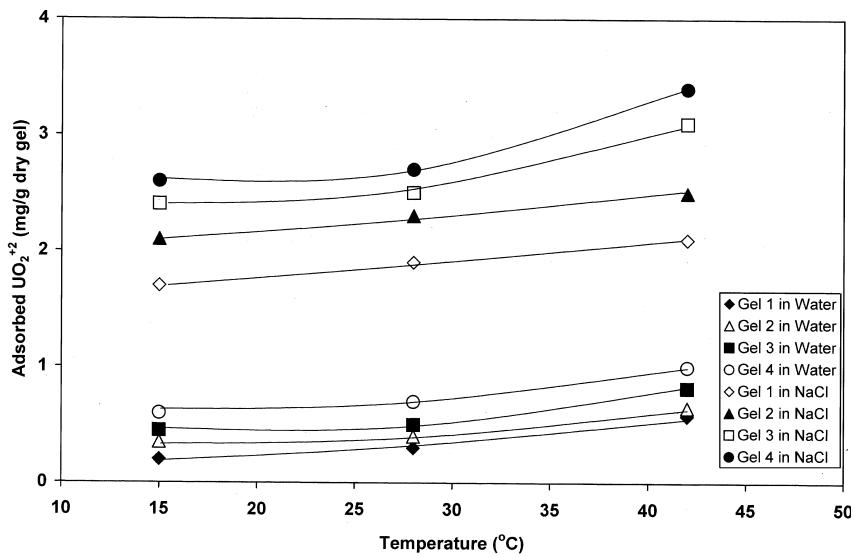
In order to investigate the effect of pH on the  $\text{UO}_2^{+2}$  adsorption capacities of hydrogels, adsorption experiments were followed at varying pH and a fixed temperature (25°C). Figure 4 shows the change in the adsorbed  $\text{UO}_2^{+2}$  ions of P(HEMA/IA) hydrogels containing various mole ratio of IA with changing pH values. Consistent with poly-electrolyte systems, adsorption of  $\text{UO}_2^{+2}$  ions in the





**Figure 3.** Effect of the mole % of IA in the gel system on the uranyl ion adsorption from uranyl nitrate solutions: (●) 5 ppm, (○) 15 ppm, (■) 30 ppm, (□) 40 ppm, (▲) 50 ppm.




**Figure 4.** Effect of mole % of IA in the gel system on uranyl ions adsorption at various pH: (◆) Gel 1, (△) Gel 2, (■) Gel 3, (○) Gel 4.



gels systems strongly depended on pH. The pH of pure water containing P(HEMA/IA) gels and UN solution were 3.9 and 4.14 respectively. The first and second dissociation constants of IA were  $pK_{a1} = 3.85$  and  $pK_{a2} = 5.44$ . Two maximum adsorption peaks were observed at pH 3.8 and 5.4, depending on IA content in the gel. If the amount of  $UO_2^{+2}$  ions adsorbed to the hydrogels were to be measured under the condition of seawater or contaminated water, pH would be adjusted about 4, excluding the carbonate effect. The adsorption of  $UO_2^{+2}$  ions onto P(HEMA/IA) hydrogels may be ionic nature, since the acidic groups of P(HEMA/IA) hydrogels in uranyl solutions are completely dissociated at these pH. The increments of adsorption capacity of P(HEMA/IA) hydrogels were approximately 20% and 25% at pH 3.8 and 5.4, respectively, depending on IA content. The results of this shrinking and reduction in the proximity of chains were provided an increase in intermolecular contacts. Similar effect on the adsorption of  $Ca^{2+}$  and  $Na^+$  ions for poly(acrylic acid) based hydrogels were observed by Khara and Peppas (11).

#### Effect of Ionic Strength and Temperature on $UO_2^{+2}$ Adsorption

The effect of temperature and ionic strength on the  $UO_2^{+2}$  adsorption capacities of P(HEMA/IA) hydrogels were investigated at 15, 28, and 42°C in



**Figure 5.** Variation of adsorbed uranyl ions from water and NaCl solution with temperature.



water and 0.1 M NaCl solutions. Variations of adsorbed  $\text{UO}_2^{+2}$  ions in pure water and NaCl solution with IA content for the above temperatures are presented in Fig. 5. As can be seen from this figure, an increase of the IA content in the hydrogel caused an increase in the amount of adsorbed  $\text{UO}_2^{+2}$  ions in both media. When the adsorbed  $\text{UO}_2^{+2}$  ions in pure water with NaCl solution were compared, it was observed that the ionic strength of NaCl had a less pronounced effect on the adsorption properties of hydrogels (Fig. 5). An increase in ionic strength generally decreased the swelling, because the difference in concentration of mobile ions between the hydrogel and solution reduced the osmotic swelling pressure of these ions inside the hydrogel. Due to the decrease in swelling and collapsing of chains in the hydrogel, the possible interaction between the  $\text{UO}_2^{+2}$  ions and polymer chain increased. Fig. 5 also shows the effect of temperature on the  $\text{UO}_2^{+2}$  adsorption. An increase in the temperature from 15°C to 42°C caused an increase in the amount of adsorbed  $\text{UO}_2^{+2}$  ions. This increase was again attributed to the shrinking of the hydrogels with increasing temperature.

## CONCLUSION

In this study, we have tried to see the effects of hydrogel composition, pH, ionic strength, and temperature on the  $\text{UO}_2^{+2}$  ions adsorption capacity of P(HEMA/IA) hydrogels. For the determination of adsorbed uranyl ion, polarographic technique was used. As this work shows, not only hydrogel composition but also external stimuli—pH, ionic strength, and temperature—play an important role in the adsorption behaviors of P(HEMA/IA) hydrogels. These hydrogel are potential sorbents to be used for the removal of  $\text{UO}_2^{+2}$  ions from wastewater and aqueous effluents.

## REFERENCES

1. Sugasaka, K.; Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y. Recovery of uranium from seawater. *Sep. Sci. Technol.* **1981**, *16*, 971.
2. Schenk, H. J.; Astheimer, L.; Witte, E. G.; Schwochau, K. Development of sorbents for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. *Sep. Sci. Technol.* **1982**, *17*, 1293.
3. Astheimer, L.; Schenk, H. J.; Witte, E. G.; Schwochau, K. Development of sorbents for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxima and imidoxime functional groups. *Sep. Sci. Technol.* **1983**, *18*, 307.



POLAROGRAPHIC DETERMINATION OF URANYL ADSORPTION 1461

4. Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. *Sep. Sci. Technol.* **1985**, *20*, 163.
5. Karadag, E.; Saraydin, D.; Güven, O. Behaviors of acrylamide-itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions. *Sep. Sci. and Technol.* **1995**, *30*, 3747.
6. Saraydin, D.; Karadag, E.; Güven, O. Adsorption of some basic dyes by acrylamide—maleic acid hydrogels. *Sep. Sci. and Technol.* **1996**, *31*, 423.
7. Güler, H.; Şahiner, N.; Ayçik, G. A.; Güven, O. Development of novel adsorbent materials for recovery and enrichment of uranium from aqueous media. *J. Appl. Polym. Sci.* **1997**, *66*, 2475.
8. Özyürek, C.; Çaykara, T.; Kantoğlu, Ö.; Güven, O. Radiation synthesis of poly(*N*-vinyl 2-pyrrolidone-*g*-tartaric acid) hydrogels and their swelling behaviors. *Polym. Adv. Technol.* (submitted).
9. Inam, R.; Somer, G. Simultaneous determination of selenium and lead in whole blood samples by differential pulse polarography. *Talanta* **1998**, *46*, 1347.
10. Çaykara, T.; Özyürek, C.; Kantoğlu, Ö.; Güven, O. Equilibrium swelling behavior of pH- and temperature-sensitive poly(*N*-vinyl 2-pyrrolidone-*g*-citric acid) polyelectrolyte hydrogels. *J. Polym. Sci. Polym. Phys.* **2000**, *38*, 2063.
11. Khare, A. R.; Peppas, N. A. Investigation of hydrogel water in polyelectrolyte gels using differential scanning calorimetry. *Polymer* **1993**, *34*, 4736.

Received April 2000

Revised July 2000



## **Request Permission or Order Reprints Instantly!**

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

**Order now!**

Reprints of this article can also be ordered at  
<http://www.dekker.com/servlet/product/DOI/101081SS100103881>